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Abstract

With the rapid development of deep neural network, data
analysis and other field of machine learning, more and more
optimization problems generated. Most of them are non-
convex optimization problems. In this article, I mainly dis-
cuss the significance of non-convex optimization problems in
deep neural networks and summarize several important de-
velopment of non-convex optimization in the past ten years.

Introduction
We have developed an in-depth understanding of convex
optimization problems and devised a set of methods for
their resolution, such as stochastic gradient descent, mini-
batching, momentum, and variance reduction. However, in
the majority of cases, particularly in the realm of deep neu-
ral networks, the problems we confront are inherently non-
convex.

Taking deep neural networks as an example, while the ac-
tivation function for each layer is convex, the composition
of multiple hidden layers results in a non-convex objective
function. General non-convex optimization is considered at
least NP-hard due to unfavorable properties inherent to such
problems, including the potential existence of numerous lo-
cal minima, the presence of saddle points, expansive flat re-
gions, and widely varying curvature.

In reality, there cannot be a universal algorithm to solve
non-convex optimization problems in all cases, given the
complexity and high dimensionality involved. Efficiently
addressing these intricate non-convex problems holds sig-
nificant importance for us.

Related works
There were many overview papers on non-convex optimiza-
tion theory and its contribution in deep neural networks.
They described their ideas and methods in great ways as well
as their applications and directions for future research. Here,
I am going to brief some outstanding overview papers on
non-convex optimization theory for deep neural networks.

(Bottou, Curtis, and Nocedal 2018) presents a comprehen-
sive theory of simple and general SG algorithms, discusses
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their practical behavior, and highlights opportunities for de-
signing algorithms with improved performance which led
to discussions about next-generation optimization methods
for large-scale machine learning, including research into two
main research directions: techniques to reduce noise in ran-
dom directions and methods that exploit second-derivative
approximations.

(?) provides an overview of optimization algorithms and
theory for training neural networks. It is worth mentioning
that this article focuses mainly on deep learning, and dis-
cusses in depth the various problems that may be encoun-
tered in the construction of deep neural networks. It focuses
on SGD, Momentum and accelerated SGD and some Adap-
tive gradient methods.

(Sun et al. 2020) is a great review about findings and re-
sults on the global landscape of neural networks. It point
out that wide neural nets may have sub-optimal local min-
ima under certain assumptions and discuss visualization and
empirical explorations of the landscape for practical neural
nets.

(Lucas 2022) consisted of three main parts. The first part,
they presented new optimization algorithms for deep learn-
ing, including Aggregated Momentum (AggMo) optimizer,
Lookahead optimizer which both provide improved opti-
mization performance for training deep neural network. The
second part presented a bottom-up analysis of neural net-
work loss landscapes. In the final part, the author adopted
a top-down approach: the Monotonic Linear Interpolation
property states that if a neural network is randomly initial-
ized and trained to convergence then the loss on the line con-
nection the initialization to the final solution will decrease
monotonically.

Recent Advances
In recent years, there have been significant advancements in
the field of non-convex optimization theory for deep neu-
ral networks. Researchers have explored various techniques
and approaches to address the challenges posed by non-
convexity in the objective functions of deep learning models.
Here are some notable recent advances:

Landscape Analysis and Geometry
Understanding the geometric properties of the loss land-
scape associated with deep neural networks has become a



focal point. Recent studies have delved into the geometry of
non-convex optimization landscapes, shedding light on the
distribution of critical points, saddle points, and flat regions.
This knowledge aids in developing optimization algorithms
that navigate the landscape more effectively.

The significance of investigating the geometric properties
of the loss landscape lies in addressing several key chal-
lenges in deep learning optimization: optimization difficulty,
avoidance of local minima, escape from saddle points, accel-
erated convergence, algorithmic design foundation.

Hessian analysis Some regions of the loss landscape
are incredibly ill-conditioned and difficult to traverse.
While other regions can be closely approximated by well-
conditioned quadratic objectives. Investigating the Hessian
matrix, both theoretically and empirically, provides valuable
insight into the loss landscape geometry and subsequent op-
timization behaviour of deep learning models (Lucas 2022).
For example, (Kunin et al. 2021) showed that symmetry aris-
ing due to invariance in neural network architectures impose
constraints on the Hessian matrix that lead to conservation
laws under gradient flow.

Dynamical systems Also, neural network optimization is
a dynamical system. Thus, we can utilize tools from dynam-
ical systems analysis to better understand the loss landscape
geometry(Lucas 2022). A more recent example given by
(Tanaka and Kunin 2021) derived properties of optimization
dynamics for deep neural networks which develop a theoret-
ical framework to study the ”geometry of learning dynam-
ics” in neural networks and reveal a key mechanism of ex-
plicit symmetry breaking behind the efficiency and stability
of modern neural networks.

Stochastic Gradient Descent (SGD) Variants
The large dimension of the decision variable in such prob-
lems motivates the use of first-order methods, which possess
a cheap iteration. Moreover, the large amount of data moti-
vates to use randomized methods such as stochastic gradient
descent, which does not require to look through the whole
dataset to make one step of the optimization procedure, thus
making the iteration even cheaper(Danilova et al. 2021).

Building on the foundation of SGD, researchers have pro-
posed and analyzed various variants to enhance optimization
performance. Techniques such as adaptive learning rates, ad-
vanced momentum methods, and strategies to reduce noise
in stochastic gradients have been explored. These advance-
ments aim to mitigate challenges associated with conver-
gence to sub-optimal solutions.

SGD with Large Step Sizes Learns Sparse Features
(Andriushchenko et al. 2023) shows the features of the dy-
namics of the Stochastic Gradient Descent and presents em-
pirical observations that commonly used large step sizes
may lead the iterates to jump from one side of a valley to
the other causing loss stabilization, and this stabilization in-
duces a hidden stochastic dynamics that biases it implicitly
toward simple predictors.

Adaptive gradient methods: AdaGrad, RMSProp,
Adama and more Make Adama as an example, Adama is

the combination of RMSProp and the momentum method,
which is well suited for problems that are large in terms
of data and/or parameters. The method is also appropriate
for non-stationary objectives and problems with very noisy
and/or sparse gradients(Kingma and Ba 2017).

Second-Order Optimization Methods
While first-order methods like SGD dominate the train-
ing of deep neural networks, there is a growing interest in
second-order optimization methods. These methods lever-
age second-order information, such as Hessians, to achieve
faster convergence and more accurate updates. Adapting
these methods to the non-convex setting is an active area
of research.

Second-Order Optimization for Non-Convex Machine
Learning (Xu, Roosta-Khorasani, and Mahoney 2018) is
an opening piece. In this study, they conduct extensive em-
pirical evaluations on a category of Newton-type methods,
specifically sub-sampled variants of trust region (TR) and
adaptive regularization with cubics (ARC) algorithms, ap-
plied to non-convex machine learning problems. Their find-
ings reveal that these methods not only exhibit computa-
tional competitiveness when compared to manually tuned
stochastic gradient descent (SGD) with momentum, achiev-
ing comparable or superior generalization performance, but
also demonstrate high robustness across various hyper-
parameter settings. Additionally, they highlight a distinctive
advantage of these Newton-type methods over SGD with
momentum—their effective utilization of curvature infor-
mation enables smooth navigation through flat regions and
avoidance of saddle points.

However, it’s crucial to acknowledge the challenges asso-
ciated with the adoption of second-order optimization meth-
ods. The computation and storage requirements for calcu-
lating and storing Hessian matrices can be computationally
expensive, especially for large-scale deep neural networks.
Addressing these computational challenges remains an on-
going area of research as researchers strive to make second-
order optimization methods more scalable and applicable to
real-world deep learning tasks.

Regularized Newton Method with Global O(1/k2) Con-
vergence In this article, the author present a Newton-
type method that converges fast from any initialization and
for arbitrary convex objectives with Lipschitz Hessians.
The iterates are given by xk+1 = xk − (∇2f(xk) +√

H||∇f(xK)||I)−1∇f(xk), H > 0 The method is the
first variant of Newton’s method that has both cheap it-
erations and provably fast global convergence(Mishchenko
2023).

Summary
The article explores the significance of non-convex opti-
mization problems in the context of deep neural networks.
Despite the development of methods for convex optimiza-
tion, non-convex problems dominate in deep learning. The
challenges associated with non-convex optimization, such as



multiple local minima and saddle points, make it a complex
and high-dimensional problem.

The related works section discusses various overview
papers on non-convex optimization theory for deep neu-
ral networks. These papers delve into optimization algo-
rithms, practical behaviors, and opportunities for improve-
ment in large-scale machine learning. Additionally, they ex-
plore the global landscape of neural networks and present
new optimization algorithms like Aggregated Momentum
and Lookahead.

In recent years, significant advances have been made in
non-convex optimization theory for deep neural networks.
The landscape analysis and geometry section emphasizes the
importance of understanding the geometric properties of loss
landscapes, including Hessian analysis and dynamical sys-
tems. Stochastic Gradient Descent (SGD) variants, such as
adaptive gradient methods, are discussed, highlighting their
effectiveness in handling large datasets.

The second-order optimization methods section intro-
duces the growing interest in leveraging second-order in-
formation, like Hessians, for faster convergence. While
acknowledging the challenges, such as computational ex-
penses for large-scale networks, the article presents studies
on regularized Newton methods with global convergence.

Prospects
These recent advances collectively contribute to a deeper un-
derstanding of non-convex optimization challenges in deep
neural networks and pave the way for more efficient train-
ing procedures, improved model architectures, and enhanced
generalization capabilities. Ongoing research continues to
explore innovative solutions to further push the boundaries
of deep learning optimization.

Future research may focus on refining and developing
new optimization algorithms, addressing challenges related
to loss landscape geometry, and improving the scalability of
second-order optimization methods. Additionally, advance-
ments in understanding and mitigating issues like saddle
points and convergence to sub-optimal solutions are areas
for exploration.

Exploring the intersection of optimization and inter-
pretability in deep learning models could provide valuable
insights. Continued efforts to bridge the gap between the-
ory and practical applications will contribute to the efficient
solution of complex and high-dimensional non-convex opti-
mization problems in the field of deep neural networks.
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